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Abstract:

Automated Guided Vehicles (or AGVs for
short) have become an important option in
material handling. In many applications, such
as container terminals, the service area is often
arranged into rectangular blocks, which leads
to a mesh-like path topology. Therefore,
devel oping efficient algorithms for AGV routing
on the mesh topology has become an important
research topic. In this paper, we present a
discrete time model, based on which a simple
routing algorithm on the mesh topology is
presented. The algorithm works by carefully
choosing suitable parameters such that the
vehicles using a same junction will arrive at
different points in time, and hence no conflicts
will occur during the routing; meanwhile, high
routing performance can be achieved. Analyses
of the task completion time and the
requirements on timing control during the AGV
routing are also presented.

1. Introduction:

Automated Guided Vehicles (or AGVs for short) have
become an important option in material handling [1-7, 9-
11]. In many applications, such as container terminalg[1,
9-11], the service areais often arranged into rectangular
blocks, which leads to a mesh-like path topology.
Therefore, developing efficient algorithms for AGV
routing on this topology has become an important
research topic.

There are many existing results about AGV [5].
However, relatively little has been known about routing
on the mesh topology. [2-3] gave the analysis of time
and space complexities for some basic AGV routing
operations on 2D-mesh topology. The upper bounds of
time and space complexities for AGV routing are

O(n?) and O(n®) respectively, where n denotes the

number of nodes in the path topology. However, the
paper does not give the details of the routing algorithms

and techniques to avoid congestion, conflicts, deadlocks,
etc.

[6-7] presented different methods to schedule and route
simultaneoudly in an nxn mesh-like path topology. The
algorithms can schedule and route simultaneously up to

4n? AGVs concurrently at one time. In these papers, the
routing process is formulated as a sorting problem.
Although there are no conflicts during the permutation, it
requires 3n steps of well-defined physical moves, which
requires AGVs to travel extra distance and consume
extraenergy to finish the tasks.

In this paper, we present a discrete time model on mesh
topology for AGV routing. Based on this model, the
routing agorithm is presented and time control
requirement is analyzed. The key idealies in making use
of the regularity of the mesh, and hence the regularity of
points of time when AGV s arrive at the intersections. By
choosing a suitable speed for the AGV's along different
directions, we can ensure that no conflicts among any
AGVs will occur. We also analyze the algorithm in
terms of bounds on the task completion time and
requirements on the routing precision controls. By our
design, the AGVs can advance directly to their
destinations, unlike in [6-7], and hence high
performance can a'so be ensured.

The remainer of the paper is organized as follows.
Section 2 describes the mesh layout and the routing
model. Section 3 gives the routing algorithm and the
time control criteria to avoid conflicts. In Section 4, we
analyze the performance of the routing algorithm.
Section 5 gives an explicit method to derive the timing
controls. Finally, Section 6 discusses possibilities of
relaxing certain constraints and points out directions of
future study.

2. Description of mesh layout model

In order to describe the marrow of our routing process
clearly, we start with a simple but general model in
which one yard block has only one station near an
intersection of pathways (refer to Figure 1). In this mesh
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layout, there arein total N x N blocks, namely N blocks
in each column and N blocks in each row. Each block
has the same size. There are two paths with different
directions between two adjacent blocks. Each Block has
one Pick up-Drop off station(or P/D station for short),
located at the upper right and upper top corner of the
block. On the left-top side, there is a vehicle park where
al AGVs are dtationed initially and to which they will
return upon completion of all tasks.
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Figure 1. Realistic mesh layout

Although there are some important details for AGV
routing, such as the size of the junction, the radius of
90° turn, the length of the AGV, etc[4-7], it is
reasonable and redlistic for us to simplify the mesh
model for convenience of anaysis and discussion. In the
simplified mesh layout model, shown as Figure 2, there
are N? junctions of pathways. A junction and the
associated neighboring station are collectively regarded
as a node. Each node is to assign it with the coordinates

(x,y) as its address or ID, where x and y represent
respectively the row and column IDs. This mesh layout
is moddled by a graph G=(V,E). The Nx N vertices
of the graph represent junction nodes, and the bi-
directional edges represent two paths between two
adjacent junction nodes, and the length of each edgeisa

constant.
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Figure 2. Simplified mesh routing model

We divide the AGV movements into three phases. In the
first phase, let AGVs set out from the park to their pick
up stations. In the second phase, let AGVs pick up loads
and travel to their destinations and drop-off loads. In the
third phase, let AGVs return to the park from their drop-
off stations. Because it is easy for us to dispatch the
AGV moving without any conflict in the first phase and
the third phase, we can focus only on the second phase
when the loaded AGV's move on the mesh layout.

We assume that the time can be divided into discrete
units of time, and that each AGV aways reaches every
junction node at some discrete point on time. It is
reasonable for us to make this assumption because the
distance between two adjacent nodes is a constant, and
we can adjust the speed of the AGVsto let them arrive at
the junctions at multiples of the unit time.

We assume that when an AGV reaches its destination, it
enters the buffer and leaves the mesh grid.

Based on the mesh layout model, we formally define the
following.

Definition: (x,,y;)=(X%,,Y,) if and only if x, = x,and
Y1= Y2

Definition (Job): A job is identified by an ordered pair
((PX,PY),(DX,DY)), where(PX,PY) represenst the
address of the pickup station, (DX,DY) represents the
address of the drop-off station, and
(PX,PY)#(DX,DY).

Assume that each job has a distinct origin and aso a
distinct(but different) destination, and an AGV is given
only one job and any job is assigned to only one AGV.

Definition (Job Set): A job set M denoting a set of k
2

jobs, where 2<k < {N?J , isdefined as follows:

M:{((P)(h PYI)V (Dxlv DYI))l 1SP)<|I PYI! DXIv DY|SI\II
fori=1,2, ..., k}.

According to the position of the origins and destinations
of jobs, any given job set M can be divided into four
subsets, denoted by M, , M, , M, respectively, such
that

M, ={((PX;,PY;),(DX;,DY,))| DX; # PX; DY, = PY,
for i=12,...,k}.

M, ={((PX;,PY,),(DX;,DY,))| DY, # PY,DX; = PX;,
for i=12,...,k}.

M, ={((PX;,PY,),(DX;,DY,))| DY; # PY,DX; # PX;,
for i=12,..,k}.
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We dso divide M, into two subsets, denoted by
M,.and M, _, such that

M,y ={((PX;,PY,),(DX; DY, ))| DY, > PY,DX; # PX;,

for i=12,...,k}.

M, ={((PX;,PY;),(DX;,DY, ))| DY, < PY,DX; # PX;,
for i=12,..,k}.

Accordingly, we have the following notations:
A, : the set of AGVsthat carry out jobsin M, ;

A :the set of AGVsthat carry out jobsin M ;
A,. 1 theset of AGVsthat carry out jobsin M, ;

Aq,_: the set of AGVsthat carry out jobsin M, _;

Definition (Direction of AGVS): V is a unit vector
which represents the direction of a given AGV, where
VO{+X~-X+y,~y} . V, =V, when v, is in the same
direction asv, . v, =-V, when Vv, is in the opposite
direction of v, . v;[¥, =0 when Vv, is in a vertical
direction of v, .

Definition (State of AGVS): ((x,Yy),t,v)is the state of

an AGV, where (x,y) represents the location in the mesh
layout, and t represents the discrete time points of the
AGV, and VO{+X~X+y,~y}.

Definition (Collision): ((x,,Y;).t;,V,) is the state of
AGV1, and ((x,,Y,).t,,V,) isthe status of AGV2. When
L=t : (X1,¥1) =(%,Y2) and
v, O{+X-X,+y,~y}—{ -V, }. In this case, we say that
AGV1 and AGV2 have a collision at (X;,Yy; )or(x,,Yy,)
when t = t; on the mesh layout.

3. Conflict-free routing algorithm

Based on the simplified mesh layout and the discrete
time, the routing algorithm is presented as follows.

Let all AGVs set out from their pick up stations at the
sametime, when t, =0.

Casea Inthejobset M,. Inthiscase, let the AGV
travel along the row PY; from (PX,,PY;) station to
(DX;,DY,).

Caseb Inthejobset M, . Inthiscase, let the AGV
travel along the column PX; from (PX;,PY; ) station to
(DX;,DY,).

Casec Inthejobset M, ,. Inthiscase letthe AGV
firstly travel along the column PX from (PX;,PY,)
stationto (DX, ,DY; ) station. Then let it travel aong the
row DY, from (DX, ,PY;) stationto (DX,,DY;) station.

Cased Inthejobset M, _. Inthiscase letthe AGV
firstly travel aong the column PX from (PX;,PY;)
station to (DX;,DY;). Then let it travel along the row
DY; from (DX, ,PY; ) stationto (DX;,DY;) station.

The routing algorithm looks ssmple, and if we let AGV's
travel inthisrule at an arbitrary speed, it is very likely to
have collisions on the mesh layout. However, as we will
show shortly, if we control the time when each AGV
reaches every junction node( we can do so by controlling
the AGV’s speed), AGVs can run on the mesh layout
with the freedom of conflicts.

We let AT,, denote the time required for an AGV to
travel through one edge of the mesh aong the
+X direction. Let AT, ( 4T, , AT ) be defined

+y !
similarly. We assume that AGVs travel at the speed v, ,
V., Vi, V_, inthese four cases respectively.

—-x 1 +y !
According to the preceding routing, we have the
following conclusions.

Claim 3.1: According to our routing algorithm, there is
no conflict between any two AGVs belonging to the same

set A (or A).

[Proof]:

According to the definition of collision, and the
assumption that each AGV has a distinct origin, it is
quite clear that there is no conflict in the AGVs

belongingto A (or A)). O

Claim 3.2: Based on the routing algorithm, any AGV
will not run into conflict with other AGVs on the mesh
layout, if the following relation is satisfied.
lem(AT,,4T,) >N

W rex(ar, at,) > S
where AT, and AT, are any two permutations from
{41, AT AT, AT}

@) ged(4T,, AT, ) 44T, (3-2)
ged(4T,, 4T, ) 44T, (33
ged(AT., AT, ) +4T,, (3-4)
gcd( AT, AT.,) 44T, (3-5)
ged(4T,, 4T, )= N (3-6)



here gcd the Greatest Common Divisor, and Icm the
Least Common Multiple.(cf. Definition A2 and
Definition A.3).

[Proof]:

Firstly let us recall some definitions and theorems of
number theory[8] which will be used in the discussions
later.

Definition A.1 (Divisibility): If aand b areintegers, we
say that a divides b if there is an integer ¢ such that
b=ac. If a divides b, we also say that a is a divisor or
factor of b.

Write a|bif a divide b; otherwise, write a £b if a does

not divideb.

Definition A.2 (The Greatest Common Divisor): The
greatest common divisor of two integers a and b, not
both zero, is the largest positive integer that divides both
aand b; it isdenoted by gcd(a,b).

Definition A.3 (The Least Common Multiple): The
least common multiple (gcd) of two integers a and b, is
the least positive integer divisible by both a and b; it is
denoted by lcm(a,b).

Definition A.4 (Linear combination): If a and b are
integers, then a linear combination of a and b is a sum of
the form ma+ nb, where both mand n are integers.

Definition A.5 (Linear diophantine eguation): A
linear diophantine equation in two variablesx and y is a
diophantine equation of the form ax+by=c, where a, b
and c areintegers.

Theorem A.1l: The greatest common divisor of the
integers a and b, that are not both zero, is the least
positive integer that is alinear combination of a and b.
Theorem A.2: Let a and b be positive integers. Then
lom(a,b)=— 22
gcd(a,b)
Theorem A.3: Let a and b be positive integers and
d=gcd(a,b). The equation ax+by=c has no integer
solutions if d+c. If d|c, then there are infinitely many
integer solutions. Moreover, if X=x%, , Y=Y, is a
particular solution of the equation, then all solutions are
given by

X=X +(b/d)n
JLy:yo—(a/d)n

Now continue with the proof of the claim 3.1. All cases
of possible conflicts are shown in Figure 3. We omitted a
few similar cases, which are symmetrical to some of the
following cases).

(1-a  (1-b) (1 (1-d)

(-8 (2-b) (2-0) (2-d)
e L NG
29 @9 (2-9) (2-h)

M 5 " M y

Figure 3. All cases of possible conflicts

Assume the initiad states of AGV1 and AGV2
respectively as follows.

AGVL (%Y )t =0.V;);

AGV2: ((%,,Y,),t,=0,).

When (x,,Y,) =(X,,Y,)=(X,y ), the states of AGV1
and AGV 2 are respectively,

AGVL (.Y, )ty 9, );
AGV2 (%Y, Wty .V, ).

Now let us prove that t, #t, in al cases of potentia
conflicts.

Case (1) This case covers (1-a), (1-b), (1-c), (2-d), (2-
0). We havethe following relations.

t, =t, +idT =idT,

t, =t,+ AT = j4T,
where 0<i,j<N-1, and 4T, and AT, are any two

permutations from { AT, , AT_, , AT, , AT_ }.
According to the definition of lcm, we have
_ lem( 4T1,4T1,)
me,
_ lem( 4T,4T,)
Jmin = A—T2

According to Inequality (3-1), we know i, jmn 2 N,
which conflict with the condition such that
0<i,j<N-1. Therefore in al these cases, t, #t, for
anyi,j,where 0<i,j<N-1.
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Case (2) This case covers (1-e), (2-a), (2-b), (2-c), (2-
€), (2-f), (2-h). We have the following relations.
{tl' =idT,, +jdT,,,
t, =k4T_,,
or

t, =idT,, + 4T,
t, =kAT_,,

or
t, =idT  +jdT,,,
t, =k4T,,,
or
t, =idT  +jdT,
2I = I<AT+y ’
where 0<i,j,k<N-1.

These four relations are similar to each other, so we can
focus on the first one.

Firstly we take alook at the following equation.
XAT,, + yAT, = KAT_, (3-7)
where x and y are integers.

From Eq. (3-6) and Eq. (3-2), we have

ged(4T, ,,4T,, ) kAT,

According to Theorem A.3, we know that Eq. (3-7) has
no integer solutions, so for any i,j O[O,N], t, #t, .

Case (3) This case covers (1-d). We have the following
relation.

t, =idT,, +jdT,,,
t, =kaT

+yo

In order to prove that tl' % t2' , we need to show that
iAT,, + AT, # kAT,

namely, jAT, #k-j|4T,,

We know that 0<| k- j|< N -1, then this situation can

be converted to the one in case (1) that we have proved.

Therefore, we conclude that in al cases, there is no any
conflict using our routing agorithm and the time limit.

4. Time requirement

Claim 4.1: The time requirement T, for all AGVs to

transport all jobs is upper-bounded by
2(N-1)max{ 4T, AT, AT, ,AT_,}

X! -x

[Proof]: Since al jobs are carried out in parald, the
time requirement for a job set M is determined by the

most time-consuming job in the set. Formally, for any
given job set, we have
T, = max{ T((PX,,PY,),(DX,,DY,)), T((PX,,PY,),

(DX;3,DY, )),.... T((PX,,PY, ).(DX,.DY, )},
where T((PX,,PY;),(DX;,DY,)) is the time requirement
for AGVi to completeitsjob.

Assume that there exists job ((1,1),(N, N)) which uses the
at_,,4T1,,,AT_ Y time to

most time and use max{ 4T,,,4T_, 4T, ,
go through one edge on the mesh layout, then we obtain
the following relation.

T((L,1),(N,N)) = 2(N - 1)max{ 4T, , , AT

—-x

AT

+y

a1}

X!

Thus, the time requirement for a job set is upper-
bounded by
T, <T((1,1),(N,N))

=2(N - 1)max{ 4T, ,4T.

—x1

o a4t AT} O
Although our routing agorithm guarantees collision-
freedom under some specia criteria, the control system
needs to know the time point when each AGV goes
through every junction node. So it is necessary for us to
consider the relation between different time points when
each AGV goes through every junction node.

Definition (Time difference): The time difference is
the minus of two time points when two AGVs reach one
specia junction node. The minimum time difference is
the minimum time difference for all AGVs at every
junction node on the mesh layout.

Claim 4.2: The minimum time difference on the mesh

layout is lower-bounded by.

min{gcd(4T,,,4T_, ),gcd( 4T,,, 4T, ),g9cd( 4T,,,4T_, ),
ged(4T.,,4T, ), gcd(4T_,,4T_ ),gecd( 4T, ,,AT_ )}

namely,

X X7

min{gcd(x,y)}
x,yOS
XZY

AT, AT AT} .

where S={4T,,,4T,,
[Proof]:

To get the minimum time difference, we can find the
minimum of the following equation:

i4T, + 4T,
where i, | are integers, and 4T, , 4T, are any two
numbers from { 4T, , 4T_, , AT+y , LIT_y }.

According to Theorem A.1, the least positive integer of
i4T, + 4T, is gcd(4T,,4T,).

Thusfor any 4T, , 4T, from { 4T,,,

the minimum of the time differenceis
min{gcd(4T,,,4T_, ),gcd( 4T, ,4T, ),gcd( 4T,

AT,

—x 1

ar,, AT},

X1 X1 X1AT_y )1
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gcd( 4T

—x1

4T,,),9cd( AT, AT.,),ged( AT, , AT )}

namely
min{gcd(x,y)}
x,yos
X2y
whereS ={ 4T, AT, AT AT } [
5. The method to construct
AT, AT, AT, AT,

We introduce the following method to construct
4T, 4T, AT, AT, which satisfy the criteria of

conflict-free routing.

We let AT, = PPRY, AT, = PSR, AT, = PRREPS
and AT,, = P?PSP/

Where P, P,, P, and P, are primes;

abx=logy N ;

c,dz=log, N;

exlogy N;

f =logp N ;

g=log, N.

Claim 5.2 The values of
at,,.,Aat, AT, AT constructed by this method satisfy

+x 15 ey S o

the criteria of conflict-free routing.

[Proof]:
According to Theorem A.2, we have

lem(4T,,,4T,,) 4T, W1,
4T, ged(4T,, AT, ) [T,
ar, _PR?

T ged(dT,, AT RS
=P >N?2>N
Similarly we can prove that for any two permutations
AT, and 4T, from { 4T, , 4T, , 4T, , 4T_, }, the
following relations are satisfied.
lem( 4T,,4T,) SN
4T,

X 1

According to the construction method, we have
ged( 4T, 4T, ) = ged( "R PRSP ) =P = N
Because P2 4P R, we have
gcd(4T,, . 4T,,) 44T, .

Similarly we can prove that the inequdlities (3-3)-(3-6)
are satisfied.

Therefore the values of
at,,.at, AT, AT constructed by this method satisfy
al the criteria of conflict-free routing. O

The differences in aT,,.4T, AT, AT, have

implications on the routing control. The smaller value of
this difference generally means the more accurate timing
when vehicles arrive at the junctions.

Claim 5.2: The mnimum time difference of
at, ., AT, AT, AT constructed by this  method

+x 1y S lox

min{ B*,P;,RJ } which islower-bounded by Q(N).

[Proof]:

According to Claim 4.2, the minimum time difference on

the mesh layout is lower-bounded by

min{gcd(4T,,,4T_, ),gcd( 4T, ., 4T, , ),g9cd( 4T, AT, ),

ged(4T,, 4T, ),gcd(4T_,, 4T, ),gcd( 4T, ,,4T_, )}

Substituting into the values of AT, AT, AT AT, we

have

min{gcd(4T,,,4T_, ),gcd( 4T, ., 4T, ),g9cd( 4T, , AT, ),
ged(4T,, 4T, ),gcd( 4T, ,4T_ ),gcd( 4T, ,,4T_ )}

= min{ B (B, PP B PSRV} = min{ BB RY )

X!

Therefore, the minimum time difference of
a1,,.,41,,, 4T, ,AT_, constructed by this method is

+Xx? +y? -x
lower-bounded by mn{P? R’ ,R’} . Because
P3,P;,R? = N, the minimum time difference is lower-
bounded by 2(N). O

From cam 41, the longest value of
a1,,.,4T,,, 4T, ,AT_, generally means a higher task

+X1 +y? -x1
completion time( for the given choice of time unit). The
following result bounds this value.

Claim 5.3: The values of AT,

+x'AT
bounded by O(N?®).

+y?

AT

—x1

LIT_y are

[Proof]:
According to the construction method, we have

AT, =P R 2 N[N = N®

Similarly, we can prove that
4t 2 N®, 4T, > N3, 4T > N3,
If we keep the values of A4T,, ,ATW,AT_x ,AT_y as small

as possible, we can make them be bounded by O(N?).
Therefore, the values of AT, AT, AT AT is

+x 1 eyl

bounded by O(N?®). O

We give a simple example to illustrate the construction.
Let N=7, we can choose AT, =2°°03
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AT, =3?03, AT, =2°[3*0 , 4T, =2°[B°[L.

The minimum time difference of this caseis 2° =8, and
the ratio between the maximum and the minimum of
a4t AT, AT, AT isabout 2.

+x15 4y -x1

6. Discussions and conclusions

We have presented a discrete time model for AGV
routing on the mesh topology. In this model, each AGV
is assumed to reach every junction node a discrete
points in time. Based on this model, we proposed a
routing algorithm which alows AGVs to travel at
different multiples of the unit time aong different
directions, which guarantees the freedom of conflicts.
The timing control requirement was anayzed, and the
method to construct the multiples of the unit time was
also introduced.

With our routing algorithm, al the AGVs can move
directly towards their destinations without conflicts.
Therefore, the overall routing performance is ensured.
Moreover, since each AGV makes a most one turn
during the entire routing process, the speed of each
AGVs is changed no more than once. Therefore, the
energy requirement by our routing algorithm is aso
relatively low. In our routing model, each AGV on the
mesh topology is assumed to be one point. However,
there are some details that we must consider in actual
implementations, such as the size of junction, the length
of the AGV, ec. These consderations have a
regquirement of the minimum time difference, which can
be adjusted by the control system. According to Claim
5.2, the minimum time difference is decided by

min{ B*,P;,R?} . Thus we can choose the value of

{P?,P;,R?} to increase the minimum time difference.

Therefore, the discrete time model and the routing
algorithm can be used in real mesh-like layout.
Similarly, the task completion time can be controlled by
choice of the units of time, the distance between
intersections and/or the speeds of AGVs. For instance,
by Clam 53, the maximum vaue of

AT, AT, AT AT, is bounded by O(N®). As N

+Xx1 +y? =X
increases, the time requirement to finish the jobs seems
to increase quickly. However, we can choose asmall unit
of time to keep the actua time requirement low, as long
as the minimum time difference for avoiding conflicts is
satisfied.

We assumed that when an AGV reaches its destination,
it enters the buffer and leaves the mesh grid. This
assumption can be aso relaxed. Usualy, when an AGV
enters the buffer of the P/D station, it takes some time
for the vehicle to completely leave the mesh grid. The
situation is similar when an AGV goes through the
junction. However, as long as the time required for an
AGV to enter the buffer of the station is less than the

minimum time difference, there are still no conflicts
during the AGV routing.

We assume that each AGV has distinct origin and also a
distinct (but different) destination, namely, the pattern of
AGV movement is permutation. This assumption can
also be relaxed such that each AGV has multiple origins
and multiple destinations. Aslong as we control the time
points for AGVs to set out from the stations and | et them
enter the buffers at proper time point, we can till
guarantee the freedom of conflicts.

There are many open issues for future research. Firstly,
how to dea with the failure of AGVs? In our agorithm
(as well as others), a single blockage will cause the
failure of the whole system. Therefore, it is essential to
consider fault-tolerant strategies. Secondly, if we alow
each AGV to make more than one turn before it reaches
its destination, we need more complicated scheme to
avoid conflicts. Thirdly, we need to devise a method to
decide the number of AGVs for the given jobs and to
deal withidle AGVs.
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